Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems

نویسندگان

  • Katarzyna M. Bocian-Ostrzycka
  • Magdalena J. Grzeszczuk
  • Lukasz Dziewit
  • Elżbieta K. Jagusztyn-Krynicka
چکیده

The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents.

Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a cen...

متن کامل

Synthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+

The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...

متن کامل

Protein disulfide bond generation in Escherichia coli DsbB–DsbA

Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB-DsbA-ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of t...

متن کامل

Disulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity.

The extracytoplasmic assembly of the Dot/Icm type IVb secretion system (T4SS) of Legionella pneumophila is dependent on correct disulfide bond (DSB) formation catalyzed by a novel and essential disulfide bond oxidoreductase DsbA2 and not by DsbA1, a second nonessential DSB oxidoreductase. DsbA2, which is widely distributed in the microbial world, is phylogenetically distinct from the canonical ...

متن کامل

Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231)

The formation of disulfide bonds that are catalyzed by proteins of the Dsb (disulfide bond) family is crucial for the correct folding of many extracytoplasmic proteins. Thus, this formation plays an essential, pivotal role in the assembly of many virulence factors. The Helicobacter pylori disulfide bond-forming system is uncomplicated compared to the best-characterized Escherichia coli Dsb path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015